摘要 —与快乐、悲伤、恐惧、愤怒、厌恶和惊讶这六种基本情绪不同,用效价(正性 - 负性)和唤醒(强度)来建模和预测维度情感已被证明对于自然和现实世界设置更灵活、适用和有用。在本文中,我们旨在推断用户在不同难度级别(基线、简单、困难和压力条件)下从事多项工作类任务时用户的面部情感,包括(i)办公室环境,他们从事一项体力要求较低但需要更大精神压力的任务;(ii)流水线环境,需要使用精细运动技能;(iii)代表远程办公和电话会议的办公室环境。为了这个目标,我们首先设计了一项具有不同条件的研究,并收集了 12 个受试者的多模态数据。然后,我们用各种机器学习模型进行了几项实验,发现:(i)面部表情的显示和预测在非工作环境和工作环境中有所不同;(ii)使用在类似工作环境中捕获的数据集可以提高预测能力;(iii)片段级(光谱表示)信息对于改善面部表情预测至关重要。索引术语——情感状态、类似工作的任务、工作环境中的情绪